Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé

Soutenance de thèse – Ani Augustine Jose

15 novembre 2019 / 09:30 - 11:30

RESOLFT Nanoscopy To Study Cellular Adhesions

Ani Augustine Jose

Thesis supervisor: Brahim Lounis,
Co-supervisor : Gregory Giannone

Abstract

Les cellules peuvent ajuster leur adhésion au substrat et leur cytosquelette en fonction des variations de nature biochimique et physique de leur environnement. En retour, les cellules peuvent également contrôler leur microenvironnement en adhérant et en générant des forces sur les cellules voisines et la matrice extracellulaire. Les adhérences focales (AF) dépendantes des intégrines sont ainsi les zones de convergences de ces interactions, intégrant les signaux biochimiques et biomécaniques entre les composants intracellulaires et extracellulaires. Diverses fonctions cellulaires liées aux AF sont associées à la formation et à la cohésion des tissus. Les cellules cancéreuses qui se propagent dans le système circulatoire utilisent des mécanismes associés à l’adhésion cellulaire pour établir de nouvelles tumeurs dans le corps.
Les techniques nanoscopiques ont révolutionné l’étude des structures biologiques en permettant à la microscopie optique d’imager sous la limite de diffraction. Le RESOLFT (Reversible Saturable OpticaL Fluorescent Transitions) permet de dépasser cette limite de diffraction en réduisant le volume d’émission par un procédé réversible On-Off. Après avoir étudié la photophysique de la protéine fluorescente rsEGFP2 qui a la propriété d’être réversiblement commutable, nous avons utilisé les paramètres photophysiques obtenus dans la construction d’un nanoscope RESOLFT. L’utilisation de cette approche a permis d’acquisition d’image à une résolution 4 fois supérieure à la limite de diffraction (~55 nm). Le RESOLFT présente aussi l’avantage de ne nécessiter qu’une faible intensité laser, ce qui réduit l’effet de photo-blanchiment et permet des acquisitions longues sur cellules vivantes.
Nous avons ensuite utilisé le RESOLFT pour étudier l’initiation, la stabilisation et le désassemblage des AF. Nous avons pu étudier la réorganisation dynamique de diverses protéines impliquées dans la formation d’AF sur des fibroblastes embryonnaires murin et des tissus ovariens de drosophila melanogaster. Nous avons observé au sein des AF des amas de β3-integrin-rsEGFP2 dont la taille est inferieurs à la limite de diffraction, prouvant ainsi la capacité du RESOLFT à étudier la réorganisation à l’échelle nanométrique des protéines dans les AF. Nous avons aussi observé une réorganisation rapide des amas de β3-integrin-rsEGFP2 à l’intérieur des AF, la durée de vie des amas n’étant que de quelques dizaines de secondes. Ces données sous-tendent un modèle de remodelage constant des amas des protéines des AF. Il était également évident que seule une faible densité d’amas d’intégrines est nécessaire pour maintenir les AF. De plus, nous avons observé un flux rétrograde d’amas de talin-rsEGFP2 dans les AF. La vitesse mesurée de ce flux s’est avérée similaire à celle obtenue par suivi de molécules uniques. Nous avons également étudié la dynamique des amas de zyxine dans les AF et observé des fluctuations du taux de zyxine au sein des AF. Nos expériences indiquent un lien entre ces fluctuations et les forces mécaniques existantes dans les AF.
Enfin, pour augmenter la vitesse d’acquisition, nous avons parallélisé notre configuration RESOLFT à l’aide d’un lattice optique. Les lattice optiques sont des configurations périodiques de lumière formées par interférence. Comparé à notre première implémentation du RESOLFT, qui permet de sonder qu’un seul point à la fois, les lattice optiques peuvent être utilisés pour sonder simultanément plusieurs points. Nous avons également mis en place un deuxième lattice optique permettant la commutation du fluorophore, ce qui nous a permis de réduire les effets de photo-blanchiment lors de l’imagerie. Cette configuration en double lattice nous a permis d’obtenir une série d’images (>30 images) de nanostructures avec des résolutions proches de 55 nm sur des cellules vivantes à une fréquence de 0,3 Hz sur un champ de vision 15×15 μm2.

Keywords: Adhesion Cellulaire, Nanoscopie, RESOLFT, lattice-RESOLFT, Cell Adhesion, Nanoscopy, RESOLFT, lattice-RESOLFT

Jury

Valentin NÄGERL Professeur (Université de Bordeaux)
Stefan JAKOBS Professeur (Max Planck Institute – Göttingen)
Dominique BOURGEOIS Directeur de Recherche (IBS – Grenoble)
Renaud POINCLOUX Ingénieur de Recherche (IPBS – Toulouse)
Sophie BRASSELET Directrice de Recherche (Institut Fresnel – Marseille)
Jean-Baptiste TREBBIA Chargé de Recherche (IOGS – Bordeaux)
Brahim LOUNIS Professeur (Université de Bordeaux)
Gregory GIANNONE Directeur de Recherche (IINS – Bordeaux)

Prochainement

Pour la communauté scientifique


Pour tous

> Tous les événements

Pour ne rien manquer !

Détails

Date :
15 novembre 2019
Heure :
09:30 - 11:30
Catégorie d’Évènement: