Dopaminergic neurons establish a distinctive axonal arbor with a majority of non-synaptic terminals

Charles Ducrot, Marie-Josée Bourque, Constantin V. L. Delmas, Anne-Sophie Racine, Dainelys Guadarrama Bello, Benoît Delignat-Lavaud, Matthew Domenic Lycas, Aurélie Fallon, Charlotte Michaud-Tardif, Samuel Burke Nanni, Freja Herborg, Ulrik Gether, Antonio Nanci, Hideto Takahashi, Martin Parent, Louis-Eric Trudeau
Preprint bioRxiv. 2020-05-13; :
DOI: 10.1101/2020.05.11.088351


Chemical neurotransmission in the brain typically occurs through synapses, which are structurally and functionally defined as sites of close apposition between an axon terminal and a postsynaptic domain. Ultrastructural examinations of axon terminals established by monoamine neurons in the brain often failed to identify a similar tight pre- and postsynaptic coupling, giving rise to the concept of “diffuse” or “volume” transmission. Whether this results from intrinsic properties of such modulatory neurons remains undefined. Using an efficient co-culture model, we find that dopaminergic neurons establish an axonal arbor that is distinctive compared to glutamatergic or GABAergic neurons in both size and propensity of terminals to avoid direct contact with target neurons. Furthermore, while most dopaminergic varicosities express key proteins involved in exocytosis such as synaptotagmin 1, only ~20% of these are synaptic. The active zone protein bassoon was found to be enriched in a subset of dopaminergic terminals that are in proximity to a target cell. Irrespective of their structure, a majority of dopaminergic terminals were found to be active. Finally, we found that the presynaptic protein Nrxn-1αSS4- and the postsynaptic protein NL-1AB, two major components involved in excitatory synapse formation, play a critical role in the formation of synapses by dopamine neurons. Taken together, our findings support the idea that dopamine neurons in the brain are endowed with a distinctive developmental program that leads them to adopt a fundamentally different mode of connectivity, compared to glutamatergic and GABAergic neurons involved in fast point-to-point signaling.SIGNIFICANCE STATEMENTMidbrain dopamine (DA) neurons regulate circuits controlling movement, motivation, and learning. The axonal connectivity of DA neurons is intriguing due to its hyperdense nature, with a particularly large number of release sites, most of which not adopting a classical synaptic structure. In this study, we provide new evidence highlighting the unique ability of DA neurons to establish a large and heterogeneous axonal arbor with terminals that, in striking contrast with glutamate and GABA neurons, actively avoid contact with the target cells. The majority of synaptic and non-synaptic terminals express proteins for exocytosis and are active. Finally, our finding suggests that, NL-1A+B and Nrxn-1αSS4-, play a critical role in the formation of synapses by DA neurons.

Know more about