NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

Rodrigo Lerchundi, Ignacio Fernández-Moncada, Yasna Contreras-Baeza, Tamara Sotelo-Hitschfeld, Philipp Mächler, Matthias T. Wyss, Jillian Stobart, Felipe Baeza-Lehnert, Karin Alegría, Bruno Weber, L. Felipe Barros
Proc Natl Acad Sci USA. 2015-08-18; 112(35): 11090-11095
DOI: 10.1073/pnas.1508259112

Lire sur PubMed

Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.

Auteurs Bordeaux Neurocampus