Mechanism of 4-aminopyridine action on voltage-gated potassium channels in lymphocytes

D Choquet, H Korn
Journal of General Physiology. 1992-02-01; 99(2): 217-240
DOI: 10.1085/jgp.99.2.217

PubMed
Lire sur PubMed



The mechanism by which 4-aminopyridine (4-AP) blocks the delayed rectifier type potassium (K+) channels present on lipopolysaccharide-activated murine B lymphocytes was investigated using whole-cell and single channel patch-clamp recordings. 4-AP (1 microM-5 mM) was superfused for 3-4 min before applying depolarizing pulses to activate the channel. During the first pulse after application of 4-AP above 50 microM, the current inactivated faster, as compared with the control, but its peak was only reduced at high concentrations of 4-AP (Kd = 3.1 mM). During subsequent pulses, the peak current was decreased (Kd = 120 microM), but the inactivation rate was slower than in the control, a feature that could be explained by a slow unblocking process. After washing out the drug, the current elicited by the first voltage step was still markedly reduced, as compared with the control one, and displayed very slow activation and inactivation kinetics; this suggests that the K+ channels move from a blocked to an unblocked state slowly during the depolarizing pulse. These results show that 4-AP blocks K+ channels in their open state and that the drug remains trapped in the channel once it is closed. On the basis of the analysis of the current kinetics during unblocking, we suggest that two pathways lead from the blocked to the unblocked states. Computer simulations were used to investigate the mechanism of action of 4-AP. The simulations suggest that 4-AP must bind to both an open and a nonconducting state of the channel. It is postulated that the latter is either the inactivated channel or a site on closed channels only accessible to the drug once the cell has been depolarized. Using inside- and outside-out patch recordings, we found that 4-AP only blocks channels from the intracellular side of the membrane and acts by reducing the mean burst time. 4-AP is a weak base (pK = 9), and thus exists in ionized or nonionized form. Since the Kd of channel block depends on both internal and external pH, we suggest that 4-AP crosses the membrane in its nonionized form and acts from inside the cell in its ionized form.

Auteurs Bordeaux Neurocampus