Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia
Nat Cell Biol. 2010-03-21; 12(4): 341-350
DOI: 10.1038/ncb2040
Lire sur PubMed
1. Nat Cell Biol. 2010 Apr;12(4):341-50. doi: 10.1038/ncb2040. Epub 2010 Mar 21.
Coupling between hydrodynamic forces and planar cell polarity orients mammalian
motile cilia.
Guirao B(1), Meunier A, Mortaud S, Aguilar A, Corsi JM, Strehl L, Hirota Y,
Desoeuvre A, Boutin C, Han YG, Mirzadeh Z, Cremer H, Montcouquiol M, Sawamoto K,
Spassky N.
Author information:
(1)Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Institut National
de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche
Scientifique UMR8197, 75005 Paris, France.
Erratum in
Nat Cell Biol. 2010 May;12(5):520.
Comment in
Nat Rev Mol Cell Biol. 2010 May;11(5):313.
Nat Cell Biol. 2010 Apr;12(4):314-5.
In mammals, motile cilia cover many organs, such as fallopian tubes, respiratory
tracts and brain ventricles. The development and function of these organs
critically depend on efficient directional fluid flow ensured by the alignment of
ciliary beating. To identify the mechanisms involved in this process, we analysed
motile cilia of mouse brain ventricles, using biophysical and molecular
approaches. Our results highlight an original orientation mechanism for ependymal
cilia whereby basal bodies first dock apically with random orientations, and then
reorient in a common direction through a coupling between hydrodynamic forces and
the planar cell polarity (PCP) protein Vangl2, within a limited time-frame. This
identifies a direct link between external hydrodynamic cues and intracellular PCP
signalling. Our findings extend known PCP mechanisms by integrating hydrodynamic
forces as long-range polarity signals, argue for a possible sensory role of
ependymal cilia, and will be of interest for the study of fluid flow-mediated
morphogenesis.
DOI: 10.1038/ncb2040
PMID: 20305650 [Indexed for MEDLINE]