Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation

Sébastien Mick, Arnaud Badets, Pierre-Yves Oudeyer, Daniel Cattaert, Aymar De Rugy
HUMAN FACTORS. August 18, 2020; :
DOI: 10.1177/0018720820941619

Sébastien Mick1, Arnaud Badets1, Pierre-Yves Oudeyer2, Daniel Cattaert1, Aymar De Rugy1, 3

1 Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, Bordeaux, Nouvelle-Aquitaine, France
2 Inria Bordeaux Sud-Ouest, Talence, France
3University of Queensland, Brisbane, Australia


We investigated how participants controlling a humanoid robotic arm’s 3D endpoint position by moving their own hand are influenced by the robot’s postures. We hypothesized that control would be facilitated (impeded) by biologically plausible (implausible) postures of the robot.

Kinematic redundancy, whereby different arm postures achieve the same goal, is such that a robotic arm or prosthesis could theoretically be controlled with less signals than constitutive joints. However, congruency between a robot’s motion and our own is known to interfere with movement production. Hence, we expect the human-likeness of a robotic arm’s postures during endpoint teleoperation to influence controllability.

Twenty-two able-bodied participants performed a target-reaching task with a robotic arm whose endpoint’s 3D position was controlled by moving their own hand. They completed a two-condition experiment corresponding to the robot displaying either biologically plausible or implausible postures.

Upon initial practice in the experiment’s first part, endpoint trajectories were faster and shorter when the robot displayed human-like postures. However, these effects did not persist in the second part, where performance with implausible postures appeared to have benefited from initial practice with plausible ones.

Humanoid robotic arm endpoint control is impaired by biologically implausible joint coordinations during initial familiarization but not afterwards, suggesting that the human-likeness of a robot’s postures is more critical for control in this initial period.

These findings provide insight for the design of robotic arm teleoperation and prosthesis control schemes, in order to favor better familiarization and control from their users.

Keywords : motor control, teleoperation, inverse kinematics, bio-inspired robotics, embodied cognition

Auteurs Bordeaux Neurocampus