Anti-inflammatory effect of palmitoylethanolamide on human adipocytes

Laurence Hoareau, Marion Buyse, Franck Festy, Palaniyandi Ravanan, Marie‐Paule Gonthier, Isabel Matias, Stefania Petrosino, Frank Tallet, Christian Lefebvre D'Hellencourt, Maya Cesari, Vincenzo Di Marzo, Régis Roche
Obesity. 2009-03-01; 17(3): 431-438
DOI: 10.1038/oby.2008.591

PubMed
Lire sur PubMed



Obesity leads to the appearance of an inflammatory process, which can be initiated even with a moderate weight gain. Palmitoylethanolamide (PEA) is an endogenous lipid, secreted by human adipocytes, that possesses numerous anti‐inflammatory properties. The main purpose of this study was to investigate the anti‐inflammatory effect of PEA on human adipocytes, as well as in a murine model. The production of tumor necrosis factor–α (TNF‐α) by lipopolysaccharide (LPS)‐treated human subcutaneous adipocytes in primary culture and CF‐1 mice was investigated by enzyme‐linked immunosorbent assay. The effects of PEA on adipocyte TNF‐α secretion were explored as well as some suspected PEA anti‐inflammatory pathways: nuclear factor–κB (NF‐κB) pathway, peroxisome proliferator‐activated receptor–α (PPAR‐α) gene expression, and TNF‐α‐converting enzyme (TACE) activity. The effects of PEA on the TNF‐α serum concentration in intraperitoneally LPS‐treated mice were also studied. We demonstrate that the LPS induced secretion of TNF‐α by human adipocytes is inhibited by PEA. This action is neither linked to a reduction in TNF‐α gene transcription nor to the inhibition of TACE activity. Moreover, PPAR‐α is not implicated in this anti‐inflammatory activity. Lastly, PEA exhibits a wide‐reaching anti‐inflammatory action as the molecule is able to completely inhibit the strong increase in TNF‐α levels in the serum of mice treated with high doses of LPS. In view of its virtual lack of toxicity, PEA might become a potentially interesting candidate molecule in the prevention of obesity‐associated insulin resistance.

Auteurs Bordeaux Neurocampus