NEUROCAMPUS PARITY COMMITTEE (NPC)

$$
\begin{gathered}
\text { RESULTS OF } 2022 \\
\text { GENDER EOUALITY } \\
\text { SURVEY }
\end{gathered}
$$

 - $\odot \circ \circ$ 0000000000000 0

CONT ENTS

PAGE 2

SUMMARY

- NPC members \& contact. 2
- NPC 2022 Key figures. 3
- NPC 2023-2025 Key objectives. 4

PAGE 5

KEY RESULTS

- The "leaky pipeline" in Bordeaux Neurocampus. 5
- Tenured women researchers are less present in decision-making than their male counterparts. 7
- Women are less likely to be promoted and less satisfied in career advancement. 7
- Women are less likely to hold management positions and to consider them in the future. 8
- Research funding is mostly awarded to men, with no perceived lack of resources among women. 9
- In early career, the work-life imbalance \& parenthood are more detrimental to women than to men. 10
- Measures to promote diversity and gender equality are still unknown to many people. 11
- All future actions implemented to reach gender equality will apply to the fight against discrimination and gender based violence (GBV). 11

PAGE 14

ANNEXES

- Survey methods. 14
- Glossary. 14
- Figure-question correspondences. 15

PAGE 16

BIBLIOGRAPHY

MEMBERS \& CONTACT

Olga Barba Vila
Ph.D. student, Synapses et circuits neuronaux, IINS.

Jérôme Baufreton

DR CNRS, Team co-leader Dopamine and neuronal assemblies, IMN, \& Director, Bordeaux Neurocampus.

Thomas Boraud

Anna Beyeler

CR Inserm, Team leader Neural circuits of anxiety,
Neurocentre Magendie.
DR CNRS, Neurologist, Network dynamics for procedural learning \& Director, IMN.

Sandrine Cremona

Engineer UB, Neurofunctional imaging group \& Gender equality referent, IMN.

Šárka Jelínková

Post-Doctorate, Membrane traffic at synapses, IINS.

Laurence Gimenez

Deputy Head of the HR department \&
Equality correspondent, DR15 CNRS.

Marie-Pierre Moisan

DR INRAE, Team co-leader Nutrition and Neuropsychiatric Symptom Dimensions, NutriNeuro.

Agnès Nadjar

Elba Molpeceres Sierra

Ph.D. student, Monoamines, Parkinson and Pain, IMN.

PU Neurosciences UB, Energy balance and obesity, Neurocentre Magendie.

Marion Paoletti

Shauna Parkes

CR CNRS, Decision and Adaptation \& Gender equality referent, INCIA.

PU sociology, Research institute Montesquieu \& RESET Project - Scientific Coordinator, UB.

Nathalie Sans
DR Inserm, Team co-leader Planar polarity and plasticity, Neurocentre Magendie, \& VP for research, UB.

Michel Thiebaut de Schotten

DR CNRS, Team co-leader Neurofunctional imaging group, IMN.

Laure Zago
CR CNRS, Neurofunctional imaging group, IMN.

2022 KEY FIGURES*

OF TEAM
LEADERS
ARE MEN

In 2022, there are 64% and 60% of women at the Ph.D. and post-doctoral levels, respectively. However, women represent only 38% of the young tenured researchers and 25% of the senior researchers. 54 research teams are managed by 72 leaders of which 79% are men. One-third of women report participating in decision-making in comparison to 50% of men.

FUNDING IS MAINLY AWARDED TO MEN

A high proportion of women researchers (from Ph.D. to research direction) do not apply for research funding (21%) compared to men (4%). 13% of men researchers are very satisfied with their success in funding applications compared to only 3% of women researchers. A small proportion of women researchers express that they very frequently lack resources (10% vs. 4% of men) but, in other cases, women researchers do not perceive the lack of resources differently to men.

IN EARLY CAREER, THE WORK-LIFE IMBALANCE AND PARENTHOOD ARE MORE DETRIMENTAL TO WOMEN THAN TO MEN

The proportion of fathers is higher than that of mothers, especially among non-tenured researchers. This suggests that it is easier for men than for women to reconcile parenthood and research positions, especially at the beginning of their career. The analysis of childcare and household workload reinforces this hypothesis, showing that, on a daily basis, female non-tenured researchers spend more time on it on average (6.5 hours) than male non-tenured researchers, male tenured researchers, and female tenured researchers (3 to 4 hours a day on average).

OF WOMEN REPORTED SEX OR GENDER BASED DISCRIMINATIONS

Gender discrimination interacts with age: 30% of women under 35 and 43% of women over 50 experience ageism (compared to 29% and 4% of men, respectively).

OF WOMEN EXPERIENCED GENDER BASED VIOLENCE (GBV) IN THEIR CURRENT WORKPLACE

1/4 women report insulting or sexist jokes, 1/5 women report intrusive and offensive questions, and $1 / 10$ women have experienced unwanted repetitive propositions of a sexual nature.

2023-2025 KEY OBJECTIVES

MONITORING

Collect and analyze quantitative indicators to evaluate the state of discrimination and monitor its evolution within Bordeaux Neurocampus. An essential step towards the implementation of targeted actions for the different functions of our scientific community.

Offer solutions in the workplace to facilitate work-life balance, such as childcare.

[^0]Gender balance improves the creativity and quality of research (Yang et al., 2022) and promotes unbiased knowledge (Beery \& Zucker, 2011). Hence, achieving gender equality in research is critical to the progress of our society as a whole.

To comprehensively identify the target actions, the Neurocampus parity committee (NPC) conducted a survey between March and June 2022 (time TO, see Annexes - Survey methods). The results synthesized in this document are supplemented with data from the human resources of the Bordeaux Neurocampus research units.

THE "LEAKY PIPELINE" ${ }^{1}$ IN BORDEAUX NEUROCAMPUS IN 2022

Fig. 1 Research unit directors by gender (violet: men, orange: women) in Bordeaux Neurocampus (Spring 2022²)

Fig. 2 Team leading by gender (orange: women) in Bordeaux Neurocampus (Spring 20223)

In 2022, 67\% of the management of research units are men (Fig.1). 54 research teams are managed by 72 leaders, of which 15 (21\%) are women (Fig.2).

[^1]In 2022 at the Bordeaux Neurocampus, there are 64% and 60% of women at the Ph.D. and post-doctoral levels, respectively ${ }^{4}$. However, women represent 38% of the young tenured researchers (CR) and 25% of the senior researchers (DR) (Fig.3) ${ }^{5}$. The disproportionate gender representation starts at a slightly later career stage than what is reported in the EU (European Commission. Directorate General for Research and Innovation., 2019) where gender differences start between the master and doctorate levels. The higher proportion of women in post-doctoral (60\%) and lecturer positions (56\%) within the Bordeaux Neurocampus is probably disciplinedependent, i.e., could be explained by the higher proportion of women in the fields of biological and related sciences compared to physical sciences, mathematics, Information and Communication Technologies and engineering in France (European Commission. Directorate General for Research and Innovation., 2021).

Note that similar proportions of W/M by positions are found in the survey sample (Fig.4), except for PU and PUPH that are underrepresented in the study.

[^2]
TENURED WOMEN RESEARCHERS ARE LESS PRESENT IN DECISION-MAKING THAN THEIR MALE

 COUNTERPARTSIn 2022, one-third of all women report participating in decision-making (25 to 50% of their time) in comparison to 50% of men (Fig.5). While decision-making opportunities could be directly related to the DR position, they are also related to gender since the proportion of men in decision-making is higher among IRs and CRs (Fig. 6) than their proportion in the position (Fig. 4).

WOMEN ARE LESS LIKELY TO BE PROMOTED AND LESS SATISFIED IN CAREER ADVANCEMENT

Limited opportunities for career progression are frequently experienced by 28% of women, compared to 19% of men. In contrast, 29% of men never experience these limitations, compared to 8% of women (Fig.7).
12% of men are very satisfied with their success rate in their career progression applications compared to 7% of women. Importantly, 23% of women have no career development prospects compared to 11% of men (Fig.8).

Inequalities in promotions are the result of several causes. First, since women are more likely employed in precarious jobs (i.e., Ph.D., Post-Doc, Fig.3), they have less access to promotion programs which, in France, are mainly intended for tenured employees.

Second, women are more likely to neglect promotion and to self-censor than men (Bosquet et al., 2019; Marry, 2008). Third, productivity measures (such as publication and citation count) account for a portion of the gender gap advancement, and emerging approaches to rethinking research assessment in a qualitative manner (Hatch \& Schmidt, 2020a) remain marginal. Moreover, a substantial part of the gender gap relies on explicit and implicit selection bias (Charlesworth \& Banaji, 2019; Hatch \& Schmidt, 2020b; Marry, 2008; Weisshaar, 2017). For example, in academia, with the same CV, women are evaluated as less competent, less hirable, and less valuable than men (Moss-Racusin et al., 2012). In 2002 at INRA, a woman had 15\% less chance of becoming a DR, compared to a man with an equivalent profile, i.e. equal mobility, publications, and administrative activities (Marry, 2008). On average, women receive higher performance ratings than male employees. Still, they receive 8.3% lower ratings for potential than men (Benson et al., 2021), and women would be perceived as having less leadership capacity, which would in turn impact their transition to DR (Marry, 2008). Also, committees with implicit biases promote fewer women when they do not believe gender bias exists (Régner et al., 2019) and managers (including men and women) who thought bias did not occur in their field are the key drivers of it-a "high risk" group (Begeny et al., 2020). A consensus emerges that training aimed at promoting awareness of unconscious bias, in general, is not sufficient to overcome it. The training must be complemented with capacity building so that people learn strategies to mitigate the impact of their unconscious biases. Training could also raise some resistance, which must be taken into account (Lombardo \& Mergaert, 2013).

WOMEN ARE LESS LIKELY TO HOLD MANAGEMENT POSITIONS AND TO CONSIDER THEM IN THE FUTURE

44% of women do not hold and have never held a management position, compared to 25% of men. The same proportion of women (45\%) do not think they will be able to reach a management position in the future, compared to 33% of men (Fig.9).

When they are asked why, men say they are not interested (50%) and they do not have the required skills (25%), whereas women are not interested (29%), but also thought that it is not accessible to them (32% compared to 12% of men) or declared that they have never thought about it (24% compared to 12% of the men).

* FOCUS ON RESEARCH POSITIONS ${ }^{6}$

The tenured researchers all hold or have held a management position. In contrast, among non-tenured researchers (Ph.D. and Post-Doc), a greater proportion of women than men do not plan to become managers (42% vs. $12 \%, n=27$ women and 9 men).

[^3]
RESEARCH FUNDING IS MOSTLY AWARDED TO MEN, WITH NO PERCEIVED LACK OF RESOURCES AMONG WOMEN

12% of men are very satisfied with their success in funding applications compared to only 2% of women. More impressively, 44% of women do not apply for funding (compared to 18% of men, Fig.10).

Women do not experience this lack of access to funding as a lack of resources. Indeed, women report a lack of resources more rarely than men (35% of women compared to 25% of men, Fig.11).

* FOCUS ON RESEARCH POSITIONS *

Previous findings are similar among researchers, not depending on the proportion of women who can apply.
13% of men researchers are very satisfied with their success in funding applications compared to only 3% of women researchers. A high proportion of women researchers do not apply for research funding (21\%) compared to men (4\%) (Fig.12). A small proportion of women researchers express lacking resources very frequently (10% vs. 4% of men), but in other cases, women researchers do not differ from men (Fig.13).

Our results are consistent with the meta-analysis by Schmaling \& Gallo (2023) of 55 studies conducted between 1975 and 2020. In summary, the proportion of women applying or re-applying for grants is lower than the proportion of eligible women. In addition, although the award acceptance rate between men and women is similar on a first-time application, women receive smaller awards and fewer awards after re-applying compared to men.

IN EARLY CAREER, THE WORK-LIFE IMBALANCE AND PARENTHOOD ARE MORE DETRIMENTAL TO WOMEN THAN TO MEN

Less women than men report reconciling work and family life (70% vs 81% of men, Fig.14), the ability to work overtime (37% vs. 53% of men), and compatibility of personal choices with career (one woman in five vs. one man in two). Also, more women than men perceive the negative impacts of parenthood on their career (72% vs. 57% of men): women massively report reduced availability to participate in competitive projects (71% of women), while men massively report reduced scientific production (86% of men).

* FOCUS ON RESEARCH POSITIONS *

The proportion of fathers is higher than that of mothers, especially among non-tenured researchers (Fig. 15). This suggests that it is easier for men than for women to reconcile parenthood and research positions, especially at the beginning of their career. The analysis of childcare and household workload reinforces this hypothesis, showing that, on a daily basis, female non-tenured researchers spend more time on it on average (6.5 hours) than male non-tenured researchers, male tenured researchers, and female tenured researchers (3 to 4 hours) (Fig.16).

Fig. 15 Parenthood

Fig. 16 Average day-time (hours) spent for child care and household by W / M parent researchers

The results obtained in the present survey are consistent with the literature. Both men and women are negatively impacted by early career parenthood, but the negative impact is greater for women, particularly in reducing collaborations (Long, 1990) and productivity (Morgan et al., 2021; Vincent-Lamarre et al., 2020).

MEASURES TO PROMOTE DIVERSITY AND GENDER EQUALITY ARE STILL UNKNOWN TO MANY PEOPLE

A significant proportion of the staff (more women than men) is unaware of gender equality and nondiscrimination measures (Fig.17). The vast majority of respondents consider all the measures to be relevant (Fig.18). Inclusive language is the least popular measure, which is explained by a stronger reluctance among men and people over 30 years old.

ALL FUTURE ACTIONS IMPLEMENTED TO REACH GENDER EQUALITY WOULD APPLY TO THE FIGHT AGAINST DISCRIMINATION AND GENDER-BASED VIOLENCE (GBV)

Regarding the sources of discrimination, one woman out of two report sex or gender, and one woman out of 3 report her age (Fig.19, next page). After the age of 30, women are systematically more discriminated than men because of their age (Fig.20, next page). The difference is very pronounced over the age of 50 where 43% of women are affected compared to only 4% of men, a gendered ageism widely reported in the workplace.

Here, young people also suffer ageism, regardless of their gender. Given women are younger on average than men, women are more affected by this discrimination. The deleterious consequences on career paths and the lasting emotional and psychological repercussions of age discrimination on young people are underlined in a recent report by the French defender of rights (Défenseur des droits, 2021). This report highlighted the importance of allowing young people, particularly young women, to assert their right to recourse, which is often underused.

Fig. 19 Sources of discrimination

Fig. 20 Age discrimination by gender and age group

Discriminations based on sexual orientation or skin color seem more targeted towards men than women (7 and 5% vs 3 and 1%, respectively), while discrimination on the basis of disability is specifically female (2\%). The proportions of these three discriminations are low only in appearance, and are much more pronounced if we relate them to the proportion of people concerned in the sample (the discrimination most likely affects between 30 and 50% of the people concerned).

Regarding GBV experiences in the current workplace (Fig.21), one woman out of four reports insulting or sexist jokes, one woman out of five reports intrusive and offensive questions about privacy, and one woman out of 10 reports unwanted repetitive propositions of a sexual nature. Moral harassment (15\%) and unwanted physical contacts (5\%) are equally reported by women and men.

A vast majority of people report the violence that they have experienced or witnessed (Fig.22). Most of these reports are addressed to friends, family and/or colleagues. 39% of people who have been bullied have informed their supervisor, and 29% informed the reporting unit. 20\% of those who were repeatedly offered unwanted sex told their superior, but none of them informed the reporting unit. Of note, one person who was asked for sex in exchange for work favors did not report it, and one other person witnessed a sexual aggression, told family and colleagues, but not the supervisor or reporting unit.

The low reporting rates to the employer are consistent with the EU 2022 study conducted in 46 higher education institutions and research institutions in 15 countries (Lipinsky et al., 2022). Experienced and witnessed GBV are reported equally and may share the same disincentives. Barriers to speech are known: doubts about the seriousness of the behavior, non-recognition of a violent act, feeling of testimony being uselessness, fear of reprisals. Moreover, once incidents are reported, other obstacles appear [e.g., the sexual harassment victim's status as a "witness" blocking access to a lawyer during the administrative disciplinary commission meetings, extreme delays in the investigation,... (Delahaye et al., 2018)] which may dissuade other victims to report.

There are no significant differences between women and men in reporting experienced GBV, but 33\% of women are still unaware of anti-harassment policies (e.g., reporting units) vs. 11% of men. This relative misinformation is worrying since the victims are more likely to be women and men do not seem to be dissuaded by anti-harassment policies, as shown by the 2023 barometer of GBV in higher education (Observatoire étudiant des VSS dans l'Enseignement supérieur, 2023).

Faced with the complexity of a phenomenon related to power relationships, there are no simple solutions. According to a study conducted in the medical field (Jenner et al., 2022), prevention hinges on a combination of highly individualized and broad system-wide measures. Also, since people are more likely to talk in informal contexts (colleagues) or outside of the workplace (family and friends), it can therefore be useful to provide information about both external and internal resources. Nevertheless, according to Clancy et al., 2020, "the most effective solutions to sexual harassment lie not in individual victims reporting or wrongdoers retraining. Instead, we should prevent sexual harassment by overhauling the structures of power that support it", i.e. by "transforming institutions into spaces where all genders share power, authority, and respect." In this sense, all actions implemented to reach gender equality apply to the fight against discrimination and GBV.

ANNEXES

SURVEY METHODS

From April to June 2022, a questionnaire was available online and several emails were sent to the Bordeaux Neurocampus community to encourage everyone to respond. The questionnaire was adapted from a questionnaire developed by the RESET consortium ${ }^{7}$ and was RGPD compliant.

Over a quarter of the Bordeaux Neurocampus responded, with 205 usable responses. The sample is 64% female. The average age of respondents is 40 years +/- SD 11 (range: 23-67) and significantly lower for women (38.5), than for men (40.9). 56\% are tenured contracts, with a fairly strong imbalance between tenured women (50\%) and tenured men (69\%). A large part of the sample is from the European Union (92\% EU), of French nationality ($82 \% \mathrm{FR}$) and speak French (89%). As such, it was not possible to properly assess inequalities related to geographical origin or language and their interactions with gender.

Compared to the Neurocampus as a whole (56% women, 55% tenured, 96% EU, 85% FR), the sample is well representative of the community, with a slight overrepresentation of women.

Regarding positions, research engineers (IR) and tenured researchers (CR, DR) were well represented, but there was an underrepresentation of male Ph.D. students, senior lecturer (PU) and hospital practitioners (PH, PUPH). Finally, the research units were equally represented, except for SanPsy where there is a high proportion of (PU)PH.

GLOSSARY

Gender: social attributes and opportunities associated with being a woman or a man in a given context.
Gender based violence (GBV): capture all forms of gender-based violence: physical violence, sexual violence, psychological violence, economic violence, sexual harassment, harassment on the grounds of gender, and environmental harassment.

Gender inequalities: inequalities between women and men relative to the activities undertaken, assigned responsibilities, decision-making opportunities, and access to and control over resources.

Sex: biological and physiological characteristics that define humans as female, male or intersex.

[^4]| Fig. 4 | What is your current occupational category? |
| :---: | :---: |
| Fig. 5 | What percentage of your work time do you spend on participation on decision making? |
| Fig. 7 | Considering the negative impacts on careers, please evaluate how limitation of career progression opportunities applies? |
| Fig. 8 | About your career, please rate your satisfaction with your success rate in career progression applications. |
| Fig. 9 | - Do you currently hold, or have you ever held, a supervisory position (staff or student)?
 - Do you expect to reach a management position in the future?
 - Why do you think you will never reach a management position in the future? |
| Fig. 10 | About your career, please rate your satisfaction with your success rate in applying for funding. |
| Fig. 11 | Considering the negative impacts on careers, please evaluate how lack of resources (financial, material, etc.) to research/develop your work applies? |
| Fig. 12 | About your career, please rate your satisfaction with your success rate in applying for funding. |
| Fig. 13 | Considering the negative impacts on careers, please evaluate how lack of resources (financial, material, etc.) to research/develop your work applies? |
| Fig. 14 | Considering the negative impacts on careers, please evaluate how difficulties in reconciling work and family life applies?
 Considering the negative impacts on careers, please evaluate how lack of availability to work overtime applies?
 Considering the negative impacts on careers, please evaluate how incompatibility of personal choices with career applies?
 To what extent do you consider that becoming a parent has had an impact on your professional career?
 In what areas have you felt this negative impact?
 - Reduced opportunities for career progression (promotions)
 - Reduced availability to participate in competitive projects.
 - Reduced scientific production (e.g.: articles, communications,...). |
| Fig. 15 | Do you have children? |
| Fig. 16 | In a standard work day, how many hours per day do you currently spend on household tasks (cooking, cleaning, laundry, shopping,...)?
 In a standard work day, how many hours per day do you currently spend on childcare: hygiene, food, transportation, help with homework, games, etc.? |
| Fig. 17 | Are you aware of any of the following rights, policies or measures in your institution? |
| Fig. 18 | Please assess the relevance of these measures to your institution. |
| Fig. 19 | Have you ever felt discriminated against/treated unfavorably for any of the following reasons? |
| Fig. 20 | In your current workplace, have you ever experienced or witnessed any of these situations? |
| Fig. 22 | What was your reaction? |

Beery, A. K., \& Zucker, I. (2011). Sex bias in neuroscience and biomedical research. Neuroscience \& Biobehavioral Reviews, 35(3), 565-572. https://doi.org/10.1016/j.neubiorev.2010.07.002

Begeny, C. T., Ryan, M. K., Moss-Racusin, C. A., \& Ravetz, G. (2020). In some professions, women have become well represented, yet gender bias persists-Perpetuated by those who think it is not happening. Science Advances, 6(26), eaba7814. https://doi.org/10.1126/sciadv.aba7814

Benson, A., Li, D., \& Shue, K. (2021). "Potential" and the Gender Promotion Gap.
Bosquet, C., Combes, P., \& García-Peñalosa, C. (2019). Gender and Promotions: Evidence from Academic Economists in France*. The Scandinavian Journal of Economics, 121(3), 1020-1053. https://doi.org/10.1111/sjoe. 12300

Charlesworth, T. E. S., \& Banaji, M. R. (2019). Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions. The Journal of Neuroscience, 39(37), 7228-7243.
https://doi.org/10.1523/JNEUROSCI.0475-18.2019
Clancy, K. B. H., Cortina, L. M., \& Kirkland, A. R. (2020). Use science to stop sexual harassment in higher education. Proceedings of the National Academy of Sciences, 117(37), 22614-22618.
https://doi.org/10.1073/pnas. 2016164117
Défenseur des droits. (2021). La perception des discriminations dans l'emploi-2021. 36. https://www.defenseurdesdroits.fr/sites/default/files/atoms/files/et_res-oit14-num-01.12.21_access.pdf

Delahaye, J.-P., Leduc, M., Nevejans, N., Letellier, L., Debré, P., \& Ganascia, J.-G. (2018). Le harcèlement sexuel dans les laboratoires: Quelques considérations éthiques. CNRS-Comets.

European Commission. Directorate General for Research and Innovation. (2019). She figures 2018. Publications Office. https://data.europa.eu/doi/10.2777/936

European Commission. Directorate General for Research and Innovation. (2021). She figures 2021: Gender in research and innovation : statistics and indicators. Publications Office.
https://data.europa.eu/doi/10.2777/06090

Hatch, A., \& Schmidt, R. (2020a). Rethinking Research Assessment: Ideas for Action. DORA. https://sfdora.org/wp-content/uploads/2020/11/DORA_IdeasForAction.pdf

Hatch, A., \& Schmidt, R. (2020b). Rethinking Research Assessment: Unintended Cognitive and System Biases. DORA. https://sfdora.org/wp-content/uploads/2020/11/DORA_UnintendendedCognitiveSystemBiases.pdf

Jenner, S. C., Djermester, P., \& Oertelt-Prigione, S. (2022). Prevention Strategies for Sexual Harassment in Academic Medicine: A Qualitative Study. Journal of Interpersonal Violence, 37(5-6), NP2490-NP2515. https://doi.org/10.1177/0886260520903130

Lipinsky, A., Schredl, C., \& Baumann, H. (2022). UniSAFE Survey - Gender-based violence and institutional responses. https://doi.org/10.7802/2475

Lombardo, E., \& Mergaert, L. (2013). Gender Mainstreaming and Resistance to Gender Training: A Framework for Studying Implementation. NORA - Nordic Journal of Feminist and Gender Research, 21(4), 296-311. https://doi.org/10.1080/08038740.2013.851115

Long, J. S. (1990). The Origins of Sex Differences in Science. Social Forces, 68(4), 1297-1316.
https://www.jstor.org/stable/2579146
Marry, C. (2008). Le plafond de verre dans le monde académique: L'exemple de la biologie: Idées économiques et sociales, N° 153(3), 36-47. https://doi.org/10.3917/idee.153.0036

Morgan, A. C., Way, S. F., Hoefer, M. J. D., Larremore, D. B., Galesic, M., \& Clauset, A. (2021). The unequal impact of parenthood in academia. Science Advances, 7(9), eabd1996. https://doi.org/10.1126/sciadv.abd1996

Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., \& Handelsman, J. (2012). Science faculty's subtle gender biases favor male students. Proceedings of the National Academy of Sciences, 109(41), 1647416479. https://doi.org/10.1073/pnas. 1211286109

Observatoire étudiant des VSS dans l'Enseignement supérieur. (2023). Baromètre 2023 des VSS dans l'Enseignement supérieur (Dossier de presse). https://observatoire-vss.com/wp-content/uploads/2023/04/Dossier-de-presse-Barometre-2023-des-violences-sexistes-et-sexuelles-dans-IEnseignement-superieur-1.pdf

Régner, I., Thinus-Blanc, C., Netter, A., Schmader, T., \& Huguet, P. (2019). Committees with implicit biases promote fewer women when they do not believe gender bias exists. Nature Human Behaviour, 3(11), 11711179. https://doi.org/10.1038/s41562-019-0686-3

Schmaling, K. B., \& Gallo, S. A. (2023). Gender differences in peer reviewed grant applications, awards, and amounts: A systematic review and meta-analysis. Research Integrity and Peer Review, 8(1), 2.
https://doi.org/10.1186/s41073-023-00127-3
Vincent-Lamarre, P., Sugimoto, C. R., \& Larivière, P. (2020). The decline of women's research production during the coronavirus pandemic. Nature. https://www.nature.com/nature-index/news-blog/decline-women-scientist-research-publishing-production-coronavirus-pandemic

Weisshaar, K. (2017). Publish and Perish? An Assessment of Gender Gaps in Promotion to Tenure in Academia. Social Forces, 96(2), 529-560. https://doi.org/10.1093/sf/sox052

Yang, Y., Tian, T. Y., Woodruff, T. K., Jones, B. F., \& Uzzi, B. (2022). Gender-diverse teams produce more novel and higher-impact scientific ideas. Proceedings of the National Academy of Sciences, 119(36), e2200841119. https://doi.org/10.1073/pnas. 2200841119

[^0]: The NPC was created in 2020 to promote diversity, equity and inclusion (DEI) and fight against gender-based violence ($G B V$) and discrimination within the neuroscience community at the University of Bordeaux.

[^1]: ${ }^{1}$ Metaphor highlighting the loss of women (i.e., the decrease in their proportion) as the professional level increases.
 ${ }^{2}$ Data from Bordeaux Neurocampus Directorate.
 ${ }^{3}$ Ibid.

[^2]: ${ }^{4}$ lbid.
 ${ }^{5} \mathrm{CR}=$ tenured researcher, $\mathrm{DR}=$ senior tenured researcher, $\mathrm{IR}=$ research engineer, $\mathrm{MC}=$ tenured lecturer, $\mathrm{PH}=$ hospital practitioner, $\mathrm{PU}=$ senior tenured lecturer

[^3]: ${ }^{6}$ Ph.D. + PostDoc $+C R+D R$

[^4]: ${ }^{7}$ This project received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 101006560. https://wereset.eu/

