Common genetic signatures of Alzheimer’s disease in Down Syndrome [version 1; peer review: 2 approved, 2 approved with reservations]

Ayati Sharma, Alisha Chunduri, Asha Gopu, Christine Shatrowsky, Wim E. Crusio, Anna Delprato
F1000Res. 2020-11-05; 9: 1299
DOI: 10.12688/f1000research.27096.1

PubMed
Read on PubMed



Background: People with Down Syndrome (DS) are born with an extra copy of Chromosome (Chr) 21 and many of these individuals develop Alzheimer’s Disease (AD) when they age. This is due at least in part to the extra copy of the APP gene located on Chr 21. By 40 years, most people with DS have amyloid plaques which disrupt brain cell function and increase their risk for AD. About half of the people with DS develop AD and the associated dementia around 50 to 60 years of age, which is about the age at which the hereditary form of AD, early onset AD, manifests. In the absence of Chr 21 trisomy, duplication of APP alone is a cause of early onset Alzheimer’s disease, making it likely that having three copies of APP is important in the development of AD and in DS. In individuals with both DS and AD, early behavior and cognition-related symptoms may include a reduction in social behavior, decreased enthusiasm, diminished ability to pay attention, sadness, fearfulness or anxiety, irritability, uncooperativeness or aggression, seizures that begin in adulthood, and changes in coordination and walking. Methods: We investigate the relationship between AD and DS through integrative analysis of genesets derived from a MeSH query of AD and DS associated beta amyloid peptides, Chr 21, GWAS identified AD risk factor genes, and differentially expressed genes in DS individuals. Results: Unique and shared aspects of each geneset were evaluated based on functional enrichment analysis, transcription factor profile and network analyses. Genes that may be important to both disorders: ACSM1, APBA2, APLP1, BACE2, BCL2L, COL18A1, DYRK1A, IK, KLK6, METTL2B, MTOR, NFE2L2, NFKB1, PRSS1, QTRT1, RCAN1, RUNX1, SAP18 SOD1, SYNJ1, S100B. Conclusions: Our findings indicate that oxidative stress, apoptosis, and inflammation/immune system processes likely underlie the pathogenesis of AD and DS.

Know more about