Inhibition of L-type Ca2+ channels in portal vein myocytes by the enantiomers of oxodipine

Eur J Pharmacol. 1994 Sep 15;269(1):105-13. doi: 10.1016/0922-4106(94)90032-9.

Abstract

We studied the effects of the enantiomers of the dihydropyridine derivative, 4-(2,3 methylenedioxyphenyl)-1,4-dihydro-2,6-dimethyl-3 carboxyethyl-5-carboxymethyl-pyridine (oxodipine), on voltage-dependent Ca2+ channels of rat portal vein myocytes by combining electrophysiological techniques and binding studies. (+)- and (-)-oxodipine depressed the L-type Ca2+ current in a concentration-dependent manner, with similar IC50 values (around 10 nM) but had no appreciable effect on the intracellular Ca2+ stores. The steady-state inactivation curve for the Ca2+ current was shifted along the voltage axis to negative membrane potentials indicating that the block of the Ca2+ current by oxodipine enantiomers increased with depolarization. The voltage-dependent inhibitory property of oxodipine was related to an increase in [3H](+)-4-(benzo-2-oxa-1,3-diazol-4-yl)-1,4-dihydro-2,6-dimethy lpy ridine- 3,5-dicarboxylic acid 3-isopropyl, 5-methyl ester (isradipine) binding affinity without change in binding capacity. In normally polarized intact strips, interactions of (+)- and (-)-oxodipine with [3H](+)-isradipine binding indicated a stimulation of the radioligand binding at low concentrations of (-)-oxodipine while the (+) enantiomer seemed to act as a competitive ligand. Depolarization of intact strips with 135 mM K(+)-solutions increased the apparent affinity of the enantiomers of oxodipine, and abolished the stimulating effect of (-)-oxodipine on the binding of [3H](+)-isradipine. Inhibition of Ca2+ current was increased in the simultaneous presence of 1 nM of (+)- and (-)-oxodipine when compared to the inhibitions induced by 2 nM of each enantiomer.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding, Competitive
  • Calcium Channel Blockers / pharmacology*
  • Computer Simulation
  • Dihydropyridines / pharmacology*
  • Dose-Response Relationship, Drug
  • Electrophysiology
  • Isradipine / metabolism
  • Isradipine / pharmacology
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / drug effects*
  • Patch-Clamp Techniques
  • Portal Vein / drug effects
  • Portal Vein / metabolism
  • Radioligand Assay
  • Rats
  • Stereoisomerism

Substances

  • Calcium Channel Blockers
  • Dihydropyridines
  • oxodipine
  • Isradipine