Aller au contenuAller au menuAller à la recherche

Richard Huganir"Regulation of Glutamate Receptors and Brain Function"

Abstract :


Our laboratory is interested in the mechanisms that regulate synaptic transmission and synaptic plasticity.
The general approach we have taken is to study molecular and cellular mechanisms that regulate neurotransmitter receptors. These receptors mediate the response of neurons to neurotransmitters released at synapses and are a central convergence point for transmission of signals between neurons. Modulation of the function of these receptors is a powerful and efficient way to modulate synaptic communication and synaptic plasticity. Over the years we have shown that receptor protein phosphorylation and the regulation of the synaptic targeting of receptors are dynamically regulated and regulate the efficiency of synaptic transmission. We are currently focusing our efforts on the mechanisms that underlie the regulation of the glutamate receptors, the major excitatory neurotransmitter receptors in the brain. These receptors are neurotransmitter-dependent ion channels that allow ions to pass through the neuronal cell membrane, resulting in the excitation of neuronal activity.

Selected publications

Sia GM, Beique JC, Rumbaugh G, Cho R, Worley PF, Huganir RL. Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron. 2007 Jul 5;55(1):87-102.
Man HY, Sekine-Aizawa Y, Huganir RL. Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3579-84.
Beique JC, Lin DT, Kang MG, Aizawa H, Takamiya K, Huganir RL. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19535-40.

Daniel Choquet